
153

Layered VolumesChapter 6:	

by Volker Herminghaus

Overview6.1	
In the previous chapter you learned about volumes and the merits of the various volume
layouts. You learned how easy it is to specify storage allocations and other features. The
relayout feature was discussed, and we made an advance mention of the term layered
volume. This chapter will talk about what at first looks like just two more volume layouts:
concat-mirror and stripe-mirror. In the more technical sections, especially the technical
deep dive, you will see what the idea behind these so-called layered volumes is, and how
it enables such features as relayout and RAID-5 mirroring.

Why Use Layered Volumes?6.1.1	

The VxVM volume layouts that we have discussed so far all work pretty well and cover
the needs of most administrators. But everything can be improved, and so volume layouts
were improved, too. If we take a deep look we will find that in the case of a disk failure,
there are a few minor issues with, for instance, a mirrored stripe. It is in this case, and only
in this case, that something can be gained from using a layered volume layout instead of
a standard volume layout. As long as all disks are OK, there is no noticeable advantage to
either layout except for improved readability and simplicity on the part of the non-layered
layouts.

In order to understand what can be improved, we need to know how a conventional
layout volume behaves in case of a disk failure. Look at the layout of a conventional mir-

V. Herminghaus and A. Sriba, Storage Management in Data Centers,

DOI: 10.1007/978-3-540-85023-6_6, © Springer-Verlag Berlin Heidelberg 2009

154

Layered Volumes

rored stripe, i.e. a volume that was created with the layout specifier mirror-stripe:

Plex-01 ENABLED

Plex-02 ENABLED

RAID-01 Volume

ENABLED

A RAID-01 volume in normal operation. Both plexes are enabled, Figure 6-1:	
the volume is enabled and active.

You see that the volume consists of two data plexes, i.e. two containers for identical
volume data. Now the normal behavior of this volume when undergoing read-I/O is the
following: The select volume read policy uses the round read method to read all plexes
in a round-robin fashion. The specific details of this read method vary from array to array
as the DDL (dynamic device layer) uses libraries that are specifically tuned for each storage
type. But in general, first major read I/O will be satisfied from one plex, the next major read
I/O will be satisfied from the next plex, and so on. In effect, this reduces the number of I/
Os on each LUN and thus the queue length on the LUNs. Performance is gained by this act
of load balancing, especially for the infamous scattered read I/O type.

But consider what happens when any one of the LUNs or disks fails: The whole plex
will be detached.

155

Overview

Plex-01 - DISABLED

Plex-02 ENABLED

RAID-01 Volume

ENABLED

A RAID-01 volume after a single disk has failed. One plex has Figure 6-2:
been disabled, the volume is still enabled and active.

This means that even if only one out of the, say, five LUNs making up a striped plex
fails, all five disks will stop doing any work for us! They will just idle; nobody asks them for
data any more. And that is for good reason, because the plex is now detached and its data
is becoming rapidly out of sync with the active plex. You don't want stale data, do you?

This is the first problem that will be solved by layered volumes.
Now consider a second disk failing. The probability of the other plex being affected is

fifty percent (actually it is a little higher, since the failed disk cannot fail again). That means
the other plex is now detached, too, and the volume has become unusable. We might have
valid data on four out of five columns of one plex, and also have valid data on some other
four out of five columns of the other plex, but still the volume is unusable. Does that make
any sense?

156

Layered Volumes

Plex-01 - DISABLED

RAID-01 Volume

DISABLED

Plex-02 - DISABLED

A RAID-01 volume after a second disk has failed, on the other Figure 6-3:
plex. Both plexes have been disabled, the volume is disabled.

Well, it does, because that is how VxVM was designed, and the way it was designed
(and BTW the way most high-availability software was designed) is to compensate for any
one fault, but not for double-faults. Why do we not compensate for two faults? Because
compensating for just one fault alone requires a lot of design the software, architecting
the solution, and operating it. There are dozens of possible single points of failure that we
need to guard against. If you had to plan for double faults, that would be not two times
dozens, but dozens times dozens! It is simply too complex to even try. Therefore it has been
almost universally agreed that a double-fault is nothing that a high-availability solution
needs to worry about. Not because it cannot happen, but because it would be impossible
to catch reliably anyway.

Losing a second disk without losing the volume was, although this feature did not
have to be implemented for "official" reasons, the second problem that was solved with
layered volumes.

Going back to our single-fault situation, however, we find another thing that does not
work as well as it could: Imagine if you replace the failed disk, and that was one out of
five disks that made up the detached plex. What needs to be done? Volume manager needs
to resynchronize the whole plex! Remember that as soon as the plex was detached due to
the disk failure, no more read or write I/O was performed to it. So at the very minimum all
those regions that have been written to must now be copied to the fixed plex before it can
be read again. But wait! So far we have not learned of any way to track where changes
have been made, which regions have been written to. That means that indeed we must
resynchronize the whole plex. Five times as much as would have been necessary if we had
kept those other four disks in sync. But that was impossible because they belong to the
same plex, and VxVM cannot detach just part of a plex, but only a whole plex.

So, to sum it up, there are three things wrong with volumes in case of a disk fail-
ure:

157

Overview

1)	 Load balancing is lost due to the whole plex being detached.

2)	 For the same reason, the whole plex needs to be resynchronised after disk repair.

3)	 While the plex is detached, failure of any disk in the other plex renders the volume
unusable (if we only have two plexes - we could have more than two and the volume
would still be online, of course).

More information on disk and plex failures and how to cope with them can be found
in the troubleshooting chapter beginning on page 349.

OK, let's get started and make some layered volumes and look at them in the Easy
Sailing chapter!

158

Layered Volumes

Easy
Sailing

Vx

Introducing 6.2	 Layered Volumes
The idea of layering comes from the following fact, that eventually hit the designers of
VxVM:

In conventional volumes, space is allocated from physical disks. Physical disks have
some limitations as to their size and reliability etc. So the subdisks that reside on those
physical disks share their limitations.

Why can we not use volumes – instead of physical disks or LUNs - as the basis for
subdisks? If we could use volumes instead of disks as the basis for subdisk allocation, then
the subdisks could be made redundant or arbitrarily sized on their own, freeing us from
some limitations such as the ones we see when a failed disks leads to a whole detached
plex.

If the subdisks were allocated from – usually redundant – volumes, then a failing disk
would not make the subdisk fail (it is redundant and therefore survives a single failure).
Instead, the subdisk would continue to run fine, and the volume would be unaffected.
Only one layer deeper, inside the volume that the subdisk was allocated from, would the
corresponding plex be detached. The subvolume would be degraded because the plex that
contains the failed disk is no longer active. But the subvolume itself as well as the volume
that builds on top of it would be unaffected. See the following graphics and compare them
to the ones about the RAID-01 volume.

159

Introducing Layered Volumes

RAID-10 Volume

ENABLED

Plex-01 ENABLED

Subvol 1 OK Subvol 2 OK Subvol 3 OK Subvol 4 OK Subvol 5 OK

A volume in Figure 6-4: RAID-10 layout. Note how the user data is struc-
tured in exactly the same way as in the case of RAID-01. Only
the metadata is rearranged to group the subdisks differently,
yielding higher resilience.

RAID-10 Volume

ENABLED

Plex-01 ENABLED

Subvol 1 OK Subvol 2 OK Subvol 3 OK Subvol 4 50% Subvol 5 OK

A volume in Figure 6-5: RAID-10 layout after a single disk has failed. The
volume is only slightly degraded, as load balancing still takes
place on most of it. Also, recovery would only require resyn-
chronisation of a small portion of the total volume. The unaf-
fected parts are still updated and need not be synchronized after
replacing the failed disk (only the mirrored subvolume need to
be resynchronised).

160

Layered Volumes

RAID-10 Volume

ENABLED

Plex-01 ENABLED

Subvol 1 OK Subvol 2 50% Subvol 3 OK Subvol 4 50% Subvol 5 OK

A volume in Figure 6-6: RAID-10 layout after another disk failure. The
volume is still accessible. In fact, it could bear three more disk
failures, provided they all happen to different columns.

Being so clearly superior to RAID-01, the concept of layering (RAID-10) was added to
VxVM. Layering is implemented transparently, which means that vxassist will build for you
a base layer of (redundant) volumes and then allocate subdisks from that base layer to form
a volume on a higher layer without you having to do anything differently from before. Let's
try it, it's really simple.

 6.2.1 concat-mirror

To create a layered mirror you just use a different volume layout specification:
 concat-mirror instead of mirror-concat or instead of specifying the individual attribute
as a comma-separated list (concat,mirror).

Synopsis for creating a layered volume with a concat-mirror layout:

vxassist make avol 1g layout=concat-mirror init=active

But look at what this created and try to understand it:

vxprint -qvhtgadg
v avol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-03 avol ENABLED ACTIVE 2097152 CONCAT - RW
sv avol-S01 avol-03 avol-L01 1 2097152 0 2/2 ENA

v avol-L01 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl avol-P01 avol-L01 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-03 avol-P01 adg01 204800 2097152 0 c0t2d0 ENA

161

Introducing Layered Volumes

pl avol-P02 avol-L01 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-03 avol-P02 adg02 204800 2097152 0 c0t3d0 ENA

That is the one major drawback: a layered volume consists of more objects and there-
fore its layout is harder to understand by looking at the output of vxprint. It looks like
two volumes were created (which is true). If you look closely at the highlighted words in
the third line of output you will see that it is not a subdisk (sd), but a subvolume (sv), i.e.
a subdisk that is based on a volume instead of a disk. You will also see where the sub-
volume was allocated from: avol-L01. And if you look at the next line you see that the
second volume that was created is actually called avol-L01. In other words, the vxassist
command created a mirrored volume, then used that volume as the basis for allocating a
subdisk for another volume. That is why this is called a layered volume: one volume lies
on top of the other.

 We will give you some help in understanding the layout very soon; it's actually not
as complicated as it first looks.

6.2.2	 stripe-mirror

Creating a layered striped mirror is just as easy as creating a layered concat mirror. Of
course the layout parameter is different: stripe-mirror instead of mirror-stripe or
mirror,stripe.

Synopsis for creating a layered volume with a stripe-mirror layout:

vxassist make avol 1g layout=stripe-mirror init=active
vxprint -qvhtgadg
v avol - ENABLED ACTIVE 2097152 SELECT avol-03 fsgen
pl avol-03 avol ENABLED ACTIVE 2097408 STRIPE 3/128 RW
sv avol-S01 avol-03 avol-L01 1 699136 0/0 2/2 ENA
sv avol-S02 avol-03 avol-L02 1 699136 1/0 2/2 ENA
sv avol-S03 avol-03 avol-L03 1 699136 2/0 2/2 ENA

v avol-L01 - ENABLED ACTIVE 699136 SELECT - fsgen
pl avol-P01 avol-L01 ENABLED ACTIVE 699136 CONCAT - RW
sd adg01-03 avol-P01 adg01 204800 699136 0 c0t2d0 ENA
pl avol-P02 avol-L01 ENABLED ACTIVE 699136 CONCAT - RW
sd adg04-03 avol-P02 adg04 204800 699136 0 c0t10d0 ENA

v avol-L02 - ENABLED ACTIVE 699136 SELECT - fsgen
pl avol-P03 avol-L02 ENABLED ACTIVE 699136 CONCAT - RW
sd adg02-03 avol-P03 adg02 204800 699136 0 c0t3d0 ENA
pl avol-P04 avol-L02 ENABLED ACTIVE 699136 CONCAT - RW
sd adg05-03 avol-P04 adg05 204800 699136 0 c0t11d0 ENA

v avol-L03 - ENABLED ACTIVE 699136 SELECT - fsgen
pl avol-P05 avol-L03 ENABLED ACTIVE 699136 CONCAT - RW
sd adg03-03 avol-P05 adg03 204800 699136 0 c0t4d0 ENA

162

Layered Volumes

pl avol-P06 avol-L03 ENABLED ACTIVE 699136 CONCAT - RW
sd adg06-03 avol-P06 adg06 204800 699136 0 c0t12d0 ENA

Understanding vxprint Output for Layered Volumes6.2.3	

So far, so good. We have just created our first layered volumes. Now how could we more
easily understand the vxprint output for a layered volume? It's actually not so hard. Once
you know the basics the secrets reveal themselves.

Let's use three different output formats for vxprint to try and combine understand-
ing of the volume layout with readability in your day-to-day job. The highlighted parts are
what you need to inspect more closely; they contain the layout of the volume and the lay-
out of the subvolume. The other parts are redundant because they show only the layouts of
the other subvolumes.. When created with vxassist, all subvolumes share the same layout
so they do not need further attention unless a volume has a problem.

Now here are the formats:
1. Easy but maybe too easy, and confusing us with extra volumes: vxprint -ht

vxprint -ht -g adg
<...>
v avol - ENABLED ACTIVE 2097152 SELECT avol-03 fsgen
pl avol-03 avol ENABLED ACTIVE 2097408 STRIPE 3/128 RW
sv avol-S01 avol-03 avol-L01 1 699136 0/0 2/2 ENA
sv avol-S02 avol-03 avol-L02 1 699136 1/0 2/2 ENA
sv avol-S03 avol-03 avol-L03 1 699136 2/0 2/2 ENA

v avol-L01 - ENABLED ACTIVE 699136 SELECT - fsgen
pl avol-P01 avol-L01 ENABLED ACTIVE 699136 CONCAT - RW
sd adg01-03 avol-P01 adg01 204800 699136 0 c0t2d0 ENA
pl avol-P02 avol-L01 ENABLED ACTIVE 699136 CONCAT - RW
sd adg04-03 avol-P02 adg04 204800 699136 0 c0t10d0 ENA

v avol-L02 - ENABLED ACTIVE 699136 SELECT - fsgen
pl avol-P03 avol-L02 ENABLED ACTIVE 699136 CONCAT - RW
sd adg02-03 avol-P03 adg02 204800 699136 0 c0t3d0 ENA
pl avol-P04 avol-L02 ENABLED ACTIVE 699136 CONCAT - RW
sd adg05-03 avol-P04 adg05 204800 699136 0 c0t11d0 ENA

v avol-L03 - ENABLED ACTIVE 699136 SELECT - fsgen
pl avol-P05 avol-L03 ENABLED ACTIVE 699136 CONCAT - RW
sd adg03-03 avol-P05 adg03 204800 699136 0 c0t4d0 ENA
pl avol-P06 avol-L03 ENABLED ACTIVE 699136 CONCAT - RW
sd adg06-03 avol-P06 adg06 204800 699136 0 c0t12d0 ENA

The output of this command consists of several parts, separated by blank lines. First
you see the high-level volume with its solitary plex and the subdisks. But as showed in the

163

Introducing Layered Volumes

initial example they are now based not on disks but on volumes and are therefore called
not subdisks but subvolumes (they are listed as type sv). OK, so subvolumes are in the plex
instead of subdisks. Where are the volumes that the subdisks were allocated from? They
are right below the volume, listed as normal volumes (which they are not, in fact. They do
not have a device driver in /dev/vx/*dsk/... to write to them). If we want to look at the top
layer volume's layout we inspect the plex line of that volume. In the layout column it will
either say STRIPE or CONCAT meaning it will be either a stripe-mirror or concat-mirror,
respectively. Next, to find out if the base volumes are mirrored once, twice, or more often,
we will look at the layout of one of them (their layout is always identical if they were cre-
ated with vxassist). If we see a base volume with two data plexes, that's simple mirroring.
If the base volume shows three data plexes, that means the layered volume is a three-way
mirror etc. It's actually very simple. The main problem with this output format is that it is
not immediately obvious where the individual subvolumes belong in the layered volume.
Besides, they look just like normal volumes. A shell script might confuse them with normal
volumes and try to start them, create snapshots from them etc., which would fail because
they really are not independent volumes but subvolumes belonging to a higher level virtual
object.

2. Compact but certainly not easy: vxprint -rt

vxprint -rt -g adg
<...>
v avol - ENABLED ACTIVE 2097152 SELECT avol-03 fsgen
pl avol-03 avol ENABLED ACTIVE 2097408 STRIPE 3/128 RW
sv avol-S01 avol-03 avol-L01 1 699136 0/0 2/2 ENA
v2 avol-L01 - ENABLED ACTIVE 699136 SELECT - fsgen
p2 avol-P01 avol-L01 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg01-03 avol-P01 adg01 204800 699136 0 c0t2d0 ENA
p2 avol-P02 avol-L01 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg04-03 avol-P02 adg04 204800 699136 0 c0t10d0 ENA
sv avol-S02 avol-03 avol-L02 1 699136 1/0 2/2 ENA
v2 avol-L02 - ENABLED ACTIVE 699136 SELECT - fsgen
p2 avol-P03 avol-L02 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg02-03 avol-P03 adg02 204800 699136 0 c0t3d0 ENA
p2 avol-P04 avol-L02 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg05-03 avol-P04 adg05 204800 699136 0 c0t11d0 ENA
sv avol-S03 avol-03 avol-L03 1 699136 2/0 2/2 ENA
v2 avol-L03 - ENABLED ACTIVE 699136 SELECT - fsgen
p2 avol-P05 avol-L03 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg03-03 avol-P05 adg03 204800 699136 0 c0t4d0 ENA
p2 avol-P06 avol-L03 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg06-03 avol-P06 adg06 204800 699136 0 c0t12d0 ENA

This output format is for the experienced administrator who has seen a lot of layered
volumes already and can parse them almost instantly. What you see is an apparently
unstructured lot of output lines with no helpful separation at all. But in exchange for the
separation you get some more valuable information: the subvolumes are now listed with
their layer number in the type field: a volume on layer 2 (i.e. one down from the top layer,

164

Layered Volumes

the regular base layer) will not be shown as a v but as a v2; a volume on layer 2. Likewise,
a plex inside such a volume will not be a pl object but a p2 object, and a subdisk not an
sd object but an s2 object. That makes this output format better palatable for scripts and
long-time VxVM hackers, who prefer it for its concise look.

3. Less compact and relatively easy: vxprint -rtL

vxprint -rtL -g adg
<...>
v avol - ENABLED ACTIVE 2097152 SELECT avol-03 fsgen
pl avol-03 avol ENABLED ACTIVE 2097408 STRIPE 3/128 RW

sv avol-S01 avol-03 avol-L01 1 699136 0/0 2/2 ENA
v2 avol-L01 - ENABLED ACTIVE 699136 SELECT - fsgen
p2 avol-P01 avol-L01 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg01-03 avol-P01 adg01 204800 699136 0 c0t2d0 ENA
p2 avol-P02 avol-L01 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg04-03 avol-P02 adg04 204800 699136 0 c0t10d0 ENA

sv avol-S02 avol-03 avol-L02 1 699136 1/0 2/2 ENA
v2 avol-L02 - ENABLED ACTIVE 699136 SELECT - fsgen
p2 avol-P03 avol-L02 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg02-03 avol-P03 adg02 204800 699136 0 c0t3d0 ENA
p2 avol-P04 avol-L02 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg05-03 avol-P04 adg05 204800 699136 0 c0t11d0 ENA

sv avol-S03 avol-03 avol-L03 1 699136 2/0 2/2 ENA
v2 avol-L03 - ENABLED ACTIVE 699136 SELECT - fsgen
p2 avol-P05 avol-L03 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg03-03 avol-P05 adg03 204800 699136 0 c0t4d0 ENA
p2 avol-P06 avol-L03 ENABLED ACTIVE 699136 CONCAT - RW
s2 adg06-03 avol-P06 adg06 204800 699136 0 c0t12d0 ENA

The last output format may be the one best suited to sophisticated newcomers. It
looks just like the previous, more demanding format, but inserts blank lines between the
subvolumes so it is easier to parse to the untrained eye. You may even want to stick with
this output format forever.

165

Understanding Layered Volumes

Technical Deep Dive

Understanding Layered Volumes6.3	

Manually Creating a 6.3.1	 Layered Volume

As always we would like to walk you through the individual virtual objects for this topic.
We will now create a layered volume, a three-column stripe-mirror of 300MB to be exact,
all by ourselves using only our bare hands and a UNIX shell! Actually we will use vxassist,
too, but only for the first steps.

export VXVM_DEFAULTDG=adg
cd /dev/vx/dsk/adg
ls -l
total 0
vxprint -qvrtg adg
<nothing>

We start with an empty disk group. First we create some mirrored and therefore redun-
dant volumes that we can later use to allocate subdisks from.

vxassist make col0vol 100m layout=mirror init=active
vxassist make col1vol 100m layout=mirror init=active
vxassist make col2vol 100m layout=mirror init=active

Now let's try to allocate a subdisk from the volumes:

vxmake sd col0sd disk=col0vol offset=0 len=100m
VxVM vxmake ERROR V-5-1-10127 creating subdisk col0sd:
 Volume does not have the storage attribute

OK, that doesn't seem to work. Volume manager tells us the volume
"does not have the storage attribute", i.e. it is not storage that is usable for VxVM.
Why is that? Easy, check this out:
ls -l
total 0
brw------- 1 root root 270, 3000 Jun 8 01:42 col0vol
brw------- 1 root root 270, 3001 Jun 8 01:42 col1vol
brw------- 1 root root 270, 3002 Jun 8 01:42 col2vol

If the device nodes are visible, they could be used for file system, database and raw

166

Layered Volumes

device access. Do we really want to use these publicly accessible devices as parts of a
volume? Certainly not, since there would be no protection against somebody unknowingly
writing to the devices, thus wrecking the contents of the aggregate volume. Besides, if the
subvolumes keep existing as a separate entity we could start and stop it individually etc.
In short, it would be a real mess trying to coordinate or rather separate accesses to the
volume as a standalone entity or as part of a layered volume. That is why VxVM says the
volume "does not have the storage attribute". For VxVM, this volume is not storage like
disk or LUN space. It is a virtual object that exists purely for the user's benefit. There would
be nothing to stop VxVM from using a volume as the basis for storage allocation, because
volumes so closely resemble actual disks (well, partitions, but in for the purpose of alloca-
tion it is really the same). But it refuses to do so because the user might use a different
access path to the same data: the volume device driver in /dev/vx/*dsk/<DG>/<Volume>.
So a volume needs to be explicitly turned into "storage" first.

How do we turn a volume into storage that can be used by VxVM for internal alloca-
tion? There's a VxVM attribute that we can set to do so. It is called the layered attribute.
If we set it to on, the volume will magically be turned into storage usable by VxVM:

vxedit set layered=on col0vol
ls -l

total 0
brw------- 1 root root 270, 3001 Jun 8 01:42 col1vol
brw------- 1 root root 270, 3002 Jun 8 01:42 col2vol

Aha! The volume on which we set the layered attribute to on has had its device driver
removed! With this trick VxVM is now able to allocate subdisks from this volume just like it
would from a physical disk. There is no longer any danger of uncoordinated parallel access
any more, since the volume is no longer accessible by the user. So let's try allocating a
subdisk again on col0vol:

vxmake sd col0sd disk=col0vol offset=0 len=100m
vxprint -qrtg adg
<...>
SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE
<...>
sd col0sd - col0vol 0 204800 - - ENA
v2 col0vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col0vol-01 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg01-01 col0vol-01 adg01 0 204800 0 c0t2d0 ENA
p2 col0vol-02 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg02-01 col0vol-02 adg02 0 204800 0 c0t3d0 ENA
<...>

This actually seems to work! Look at how the objects are defined: The type in the left
most column show that the first element is an sd record, i.e. a subdisk. In column four of
the subdisk, where there used to be names like adg01, adg02 etc., there is the name of the
volume: col0vol! That is actually rather obvious and straightforward when you think of it.

Of course, for our convenience the actual volume is appended to the subdisk line as

167

Understanding Layered Volumes

a v2 record (volume on layer 2, with plexes being p2 and subdisks being s2), so that the
internal layout characteristics of the subvolume can be easily determined (number of mir-
rors and logs etc.).

To finish manufacturing a layered volume we need to repeat the above process accord-
ingly with the other volumes:

vxedit set layered=on col1vol col2vol
ls -l
total 0
vxmake sd col1sd disk=col1vol offset=0 len=100m
vxmake sd col2sd disk=col2vol offset=0 len=100m
vxprint -qrtg adg
<...>
sd col0sd - col0vol 0 204800 - - ENA
v2 col0vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col0vol-01 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg01-01 col0vol-01 adg01 0 204800 0 c0t2d0 ENA
p2 col0vol-02 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg02-01 col0vol-02 adg02 0 204800 0 c0t3d0 ENA

sd col1sd - col1vol 0 204800 - - ENA
v2 col1vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col1vol-01 col1vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg03-01 col1vol-01 adg03 0 204800 0 c0t4d0 ENA
p2 col1vol-02 col1vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg04-01 col1vol-02 adg04 0 204800 0 c0t10d0 ENA

sd col2sd - col2vol 0 204800 - - ENA
v2 col2vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col2vol-01 col2vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg05-01 col2vol-01 adg05 0 204800 0 c0t11d0 ENA
p2 col2vol-02 col2vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg06-01 col2vol-02 adg06 0 204800 0 c0t12d0 ENA

So we got all three of our subdisks together. All we need to do now is actually make
a stripe from them. That's not so hard, just put them into a plex together, and throw the
plex into a volume, then wrap a volume around it with the appropriate usage type (fsgen
for file system generic). Creating a striped plex manually using vxmake requires the use of
both the ncol and the stwidth parameter, so we'll pick something reasonable like ncol=3
and 1 MB stripesize.

vxmake plex manualvol-01 layout=stripe ncol=3 \
	 sd=col0sd,col1sd,col2sd stwidth=1m
vxprint -qrtg adg
<...>
pl manualvol-01 - DISABLED - 614400 STRIPE 3/2048 RW
sv col0sd manualvol col0vol 1 204800 0/0 2/2 ENA

168

Layered Volumes

v2 col0vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col0vol-01 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg01-01 col0vol-01 adg01 0 204800 0 c0t2d0 ENA
p2 col0vol-02 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg02-01 col0vol-02 adg02 0 204800 0 c0t3d0 ENA
sv col1sd manualvol col1vol 1 204800 1/0 2/2 ENA
v2 col1vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col1vol-01 col1vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg03-01 col1vol-01 adg03 0 204800 0 c0t4d0 ENA
p2 col1vol-02 col1vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg04-01 col1vol-02 adg04 0 204800 0 c0t10d0 ENA
sv col2sd manualvol col2vol 1 204800 2/0 2/2 ENA
v2 col2vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col2vol-01 col2vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg05-01 col2vol-01 adg05 0 204800 0 c0t11d0 ENA
p2 col2vol-02 col2vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg06-01 col2vol-02 adg06 0 204800 0 c0t12d0 ENA

Note how the subdisk virtual objects (sd) have turned into subvolume virtual objects
(sv) to denote that their base storage is not a disk, but a volume.

vxmake vol manualvol usetype=fsgen plex=manualvol-01
vxprint -qrtg adg
<...>
v manualvol - DISABLED EMPTY 614400 ROUND - fsgen
pl manualvol-01 manualvol DISABLED EMPTY 614400 STRIPE 3/2048 RW
sv col0sd manualvol-01 col0vol 1 204800 0/0 2/2 ENA
v2 col0vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col0vol-01 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg01-01 col0vol-01 adg01 0 204800 0 c0t2d0 ENA
p2 col0vol-02 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg02-01 col0vol-02 adg02 0 204800 0 c0t3d0 ENA
sv col1sd manualvol-01 col1vol 1 204800 1/0 2/2 ENA
v2 col1vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col1vol-01 col1vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg03-01 col1vol-01 adg03 0 204800 0 c0t4d0 ENA
p2 col1vol-02 col1vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg04-01 col1vol-02 adg04 0 204800 0 c0t10d0 ENA
sv col2sd manualvol-01 col2vol 1 204800 2/0 2/2 ENA
v2 col2vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col2vol-01 col2vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg05-01 col2vol-01 adg05 0 204800 0 c0t11d0 ENA
p2 col2vol-02 col2vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg06-01 col2vol-02 adg06 0 204800 0 c0t12d0 ENA

All we have left to do is to start the volume now:

169

Understanding Layered Volumes

vxvol start manualvol
VxVM vxvol INFO V-5-1-12459 Volume col0vol of diskgroup adg is already started
VxVM vxvol INFO V-5-1-12459 Volume col1vol of diskgroup adg is already started
VxVM vxvol INFO V-5-1-12459 Volume col2vol of diskgroup adg is already started

Ignore the INFO messages; VxVM just tells us that it did not need to start the internal
volumes because they were running already (the vxassist make command started them
automatically). When we check the volume now, we find a perfectly good layered volume
ready to serve us:

vxprint -qrtg adg
<...>
v manualvol - ENABLED ACTIVE 614400 ROUND - fsgen
pl manualvol-01 manualvol ENABLED ACTIVE 614400 STRIPE 3/2048 RW
sv col0sd manualvol-01 col0vol 1 204800 0/0 2/2 ENA
v2 col0vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col0vol-01 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg01-01 col0vol-01 adg01 0 204800 0 c0t2d0 ENA
p2 col0vol-02 col0vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg02-01 col0vol-02 adg02 0 204800 0 c0t3d0 ENA
sv col1sd manualvol-01 col1vol 1 204800 1/0 2/2 ENA
v2 col1vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col1vol-01 col1vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg03-01 col1vol-01 adg03 0 204800 0 c0t4d0 ENA
p2 col1vol-02 col1vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg04-01 col1vol-02 adg04 0 204800 0 c0t10d0 ENA
sv col2sd manualvol-01 col2vol 1 204800 2/0 2/2 ENA
v2 col2vol - ENABLED ACTIVE 204800 SELECT - fsgen
p2 col2vol-01 col2vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg05-01 col2vol-01 adg05 0 204800 0 c0t11d0 ENA
p2 col2vol-02 col2vol ENABLED ACTIVE 204800 CONCAT - RW
s2 adg06-01 col2vol-02 adg06 0 204800 0 c0t12d0 ENA

6.3.2	 Mirroring RAID-5 Volumes

We certainly are not great fans of software RAID-5, but we are fans of using whatever
possibilities a software offers us, even if it is just to double-check if we got everything right
so far. So let's try and trick VxVM into doing something it does not normally do: mirroring
a RAID-5 plex. Look what happens normally when you try to do that (we use the nolog
keyword here purely because it makes parsing the vxprint output a little easier. We also use
init=zero to speed up synchronisation of parity data):

vxassist make raid5vol 100m layout=raid,nolog ncol=3 init=zero
vxprint -qrtg adg
v raid5vol - ENABLED ACTIVE 204800 RAID - raid5

170

Layered Volumes

pl raid5vol-01 raid5vol ENABLED ACTIVE 204800 RAID 3/32 RW
sd adg01-01 raid5vol-01 adg01 0 102400 0/0 c0t2d0 ENA
sd adg02-01 raid5vol-01 adg02 0 102400 1/0 c0t3d0 ENA
sd adg03-01 raid5vol-01 adg03 0 102400 2/0 c0t4d0 ENA
vxassist mirror raid5vol
VxVM vxassist ERROR V-5-1-344 avol: RAID-5 volumes cannot be mirrored

Well, we're not going to believe that. But we have to hide the fact that the layout is
RAID-5 from VxVM. So we set the "storage attribute", allocate a subdisk from what has
now become VxVM–usable storage, wrap a plex and a volume around it and end up with
a layered RAID-5 volume.

vxedit set layered=on raid5vol
vxmake sd raid5sd disk=raid5vol len=100m offset=0
vxprint -rtqgadg
<...>
sd raid5sd - raid5vol 0 204800 - - ENA
v2 raid5vol - ENABLED ACTIVE 204800 RAID - raid5
p2 raid5vol-01 raid5vol ENABLED ACTIVE 204800 RAID 3/32 RW
s2 adg01-01 raid5vol-01 adg01 0 102400 0/0 c0t2d0 ENA
s2 adg02-01 raid5vol-01 adg02 0 102400 1/0 c0t3d0 ENA
s2 adg03-01 raid5vol-01 adg03 0 102400 2/0 c0t4d0 ENA
vxmake plex layraid5vol-01 sd=raid5sd
vxmake vol layraid5vol usetype=fsgen plex=layraid5vol-01
vxvol start layraid5vol
vxprint -rtqgadg
<...>
v layraid5vol - ENABLED ACTIVE 204800 ROUND - fsgen
pl layraid5vol-01 layraid5vol ENABLED ACTIVE 204800 CONCAT - RW
sv raid5sd layraid5vol-01 raid5vol 1 204800 0 1/1 ENA
v2 raid5vol - ENABLED ACTIVE 204800 RAID - raid5
p2 raid5vol-01 raid5vol ENABLED ACTIVE 204800 RAID 3/32 RW
s2 adg01-01 raid5vol-01 adg01 0 102400 0/0 c0t2d0 ENA
s2 adg02-01 raid5vol-01 adg02 0 102400 1/0 c0t3d0 ENA
s2 adg03-01 raid5vol-01 adg03 0 102400 2/0 c0t4d0 ENA

Here we are, the proud owners of a layered RAID-5 volume. Now we can mirror it
easily because VxVM does not check the conditions inside layered storage the same as it
does otherwise.

vxassist mirror layraid5vol
vxprint -rtqgadg
<...>
v layraid5vol - ENABLED ACTIVE 204800 ROUND - fsgen
pl layraid5vol-01 layraid5vol ENABLED ACTIVE 204800 CONCAT - RW
sv raid5sd layraid5vol-01 raid5vol 1 204800 0 2/2 ENA
v2 raid5vol - ENABLED ACTIVE 204800 RAID - raid5

171

Understanding Layered Volumes

p2 raid5vol-01 raid5vol ENABLED ACTIVE 204800 RAID 3/32 RW
s2 adg01-01 raid5vol-01 adg01 0 102400 0/0 c0t2d0 ENA
s2 adg02-01 raid5vol-01 adg02 0 102400 1/0 c0t3d0 ENA
s2 adg03-01 raid5vol-01 adg03 0 102400 2/0 c0t4d0 ENA
p2 layraid5vol-P01 raid5vol ENABLED LOG 205056 STRIPE 3/128 RW
s2 adg04-01 layraid5vol-P01 adg04 0 68352 0/0 c0t10d0 ENA
s2 adg05-01 layraid5vol-P01 adg05 0 68352 1/0 c0t11d0 ENA
s2 adg06-01 layraid5vol-P01 adg06 0 68352 2/0 c0t12d0 ENA

The new plex even has the same number of columns! But it's a stripe, not a parity-
stripe, therefore the subdisks in the second plex are smaller (they don't need to hold the
additional parity data).

With a little more work we could, of course, have built another RAID-5 volume, layered
that one, too, and put it into the volume to create a pure RAID-5 to RAID-5 mirror, but
we are sure that with the knowledge you just gained you are able to do it yourself if you
are so inclined.

